Cell Division

Biology 30i
Jon Paul Cooper

HOMERSAPIEN

Cell Division I) Introduction

Cell Division

I) Introduction

- nucleic acids are biological chemicals that direct the growth and development of every organism.
- there are two types:
- RNA (ribonucleic acid)
- DNA (deoxyribonucleic acid)

Cell Division

I) Introduction

- there are two types:
- RNA (ribonucleic acid)
- DNA (deoxyribonucleic acid)
- DNA is the main component of genes in all cells
- each gene contains instructions for making RNA
- RNA contains instructions for making proteins.
- proteins make up the structures of a cell and controls how it functions.

Cell Division

I) Introduction

- RNA contains instructions for making proteins.
- proteins make up the structures of a cell and controls how it functions.
- the majority of organism have no true nucleus
- we call these organisms "prokaryotes" "pro" meaning before "karyon" meaning nucleus
- the prokaryotes are divided into two domains:
- Bacteria
- Archaea

Figure P7.1 Two of the three domains of life contain prokaryotic organisms. The remaining domain contains eukaryotic organisms, including humans.

cyanobacteria

Bacteria

- Prokaryotic, unicellular organisms
- Lack a membrane-bounded nucleus
- Reproduce asexually
- Heterotrophic by absorption
- Autotrophic by chemosynthesis
or by photosynthesis
- Move by flagella

protists

Archaea

- Prokaryotic, unicellular organisms
- Lack a membrane-bounded nucleus
- Reproduce asexually
- Many are autotrophic by
chemosynthesis; some are heterotrophic by absorption
- Unique rRNA base sequence
- Distinctive plasma membrane and cell wall chemistry

Cell Division

I) Introduction

- we call these organisms "prokaryotes"
"pro" meaning before
"karyon" meaning nucleus
- the proakaryotes are divided into two domains:
- Bacteria
- Archaea
- organisms with a true nucleus are called eukaryotes "eu" meaning true
"karyon" meaning nucleus
- eukaryotic cells have organelles that are specialized to perform tasks much like cells of the human body are differentiated to perform tasks.

Figure P7.2 The cell nucleus and related structures. Continuous with the outer membrane of the nuclear envelope is a system of flattened membrane-bound sacs, the endoplasmic reticulum, studded with proteinsynthesizing ribosomes. Some ribosomes also float freely in the cytoplasm.

Cell Division

I) Introduction

Cell
Division
Activity

Print Me

Cell Division II) The Cell Cycle

Cell Division

II) The Cell Cycle

A) Introduction
"growth comes about by the addition of new cells, not the ever increasing size of just one cell"

- as cells grow in size the volume of its cytoplasm increases at a faster rate than the surface area of plasma membrane
- the cell absorbs nutrients and excretes wastes through its plasma membrane.
- if the cell continues to grow the plasma membrane will be too small to meet the cells metabolic needs (cell can only be a certain maximum size)

Cell Division

II) The Cell Cycle

- the cell absorbs nutrients and excretes wastes through its plasma membrane.
- if the cell continues to grow the plasma membrane will be too small to meet the cells metabolic needs (cell can only be a certain maximum size)
- remember that cells need to keep a large surface area to volume ratio

Figure 16.1 The ratio of surface area to volume is a key factor that limits cell size. In these model cells, an increase in the length of the cell from 1 mm to 4 mm causes the ratio of surface area to volume to decrease from 6:1 to 1.5:1.

Cell Division

II) The Cell Cycle
B) Cell Division and the Cell Cycle

- the life cycle of the cell is called the cell cycle.
- body cells are called somatic cells (all cells other than gametes)
- somatic cells have varying cell cycles.
ex. blood and skin cells are replaced frequently nerve cells divide infrequently or not at all
- a single cell cycle is defined as the sequence of events from one cell division to the next.

Cell Division

II) The Cell Cycle

- somatic cells have varying cell cycles.
ex. blood and skin cells are replaced frequently nerve cells divide infrequently or not at all
- a single cell cycle is defined as the sequence of events from one cell division to the next.
- the central feature of the cell cycle is the way that genetic material is duplicated and then passed from the original cell (the parent cell) to each new cell (daughter cell)
- the process is possible because of the highly organized genetic material within the cell.

Cell Division

II) The Cell Cycle

- the central feature of the cell cycle is the way that genetic material is duplicated and then passed from the original cell (the parent cell) to each new cell (daughter cell)
- the process is possible because of the highly organized genetic material within the cell.
- the genetic information of a cell is contained in the DNA.
- a chromosome
- is a length of DNA and its associated proteins.
- is found in the nucleus.
- there is about 3 meters of DNA in a single human cell.
- the diameter of a nucleus is only about $5 \mu \mathrm{~m}$ (this like stuffing 150 m of string into a lunch box)

Cell Division

II) The Cell Cycle

- there is about 3 meters of DNA in a single human cell.
- the diameter of a nucleus is only about $5 \mu \mathrm{~m}$ (this like stuffing 150 m of string into a lunch box)
- a highly organized arrangement of proteins, called histones, and DNA compact the genetic material inside the nucleus.
- for the majority of a cell's life genetic material appears as a mass of long, intertwined strands known as chromatin.

Cell Division

II) The Cell Cycle

- for the majority of a cell's life genetic material appears as a mass of long, intertwined strands known as chromatin.
- as genetic material is reorganized during the process of cellular division, the threads of chromatin condense and become distinct chromosomes.
- the "pinched in" region in the chromosome is a specialized region called a centromere.

- as genetic material is reorganized during the process of cellular division, the threads of chromatin condense and become distinct chromosomes.
- the "pinched in" region in the chromosome is a specialized region called a centromere. of organization of genetic material in a eukaryotic cell

Print Me

Cell Division

II) The Cell Cycle

- the number of individual chromosome numbers varies from species to species.
- human somatic cells have 46 chromosomes
- these 46 chromosomes can be organized into 22 pairs of homologous (similar in appearance) chromosomes
- each somatic cell has two sex chromosomes

$$
\begin{aligned}
& \mathrm{xx} \sim \text { female (homologous pair) } \\
& \mathrm{xy} \sim \text { male (pair) }
\end{aligned}
$$

Cell Division

II) The Cell Cycle

- each somatic cell has two sex chromosomes

$$
\begin{aligned}
& \mathrm{xx} \sim \text { female (homologous pair) } \\
& \mathrm{xy} \sim \text { male (pair) }
\end{aligned}
$$

- homologous chromosomes
- carry the same genes at the same location (locus) (genes are areas of DNA that contain specific genetic information)
- not identical to each other.
\square they carry different forms, or alleles, of the same gene

Cell Division II) The Cell Cycle

- homologous chromosomes
- carry the same genes at the same location (locus)

(genes are areas of DNA that contain specific genetic information)
- not identical to each other.
- they carry different forms, or alleles, of the same gene
- a cell that contains pairs of homologous chromosomes is said to be diploid (Greek for "double")
- the diploid number in humans is 46 or 23 pair.
- a cell that contains unpaired chromosomes is said to be haploid (Greek for "single")
- human gametes are haploid.

Cell Division
 II) The Cell Cycle

- a cell that contains unpaired chromosomes is said to be haploid (Greek for "single")
- human gametes are haploid.
- diploid human cells are described as $2 \mathrm{n}=46$
("2n" meaning diploid)
- haploid human cells are described as $\mathrm{n}=23$
("n" meaning haploid)
- in corn plants $\mathrm{n}=10$
- in fruit flies $\mathrm{n}=4$
- In the Ophioglossum fern upto $2 \mathrm{n}=1400$
- in a hermit crab $2 \mathrm{n}=254$

Cell Division

II) The Cell Cycle

- in corn plants $\mathrm{n}=10$
- in fruit lies $\mathrm{n}=4$

- In the Ophioglossum fern upto $2 \mathrm{n}=1400$
- in a hermit crab $2 \mathrm{n}=254$
- some organisms are polypoid
- have sets of more than two homologous chromosomes.
\square some plants are tetraploid (4n), triploid (3n) and even octoploid (8n)
- the particular set of chromosomes that an individual has is called the karyotype.
- the human karyotype is made up of 22 pairs of autosomes (non sex chromosomes) and one pair of sex chromosomes.

Known Paleopolyploidy in Eukaryotes

Cell Division II) The Cell Cycle
 B) Stages of The Cell Cycle

Cell Division

II) The Cell Cycle

B) Stages of the Cell Cycle

- the cell cycle takes place in phases that occur one after the other without stopping.
- the phases of the cell cycle:
- S phase
- G2 phase
- Mitosis and Cytokinesis
- G1 phase

Figure 16.5
The cell cycle. Interphase, the stage of growth and metabolic activity, occupies most of the cell cycle. The division stage involves the reproduction of the nucleus and the division of the cell contents.

Cell Division

II) The Cell Cycle

- the phases of the cell cycle:
- S phase
- G2 phase
- Mitosis and Cytokinesis
- G1 phase
- the cell cycle can be divided into two parts
- Division Phase
- the components of the cytoplasm and the nucleus of the parent cell are divided to give rise to two identical daughter cells.
- mitosis is the segregation of the copied material

- cytokinesis is the splitting of the parent cell into two daughter cells.
- small part of the cell cycle

Cell Division

II) The Cell Cycle

- cytokinesis is the spliltting of the parent cell into two daughter cells.
- small part of the cell cycle
- Interphase
- encompasses the majority of the cell cycle
- G1 Phase
- first called the Gap 1 phase because early on no one knew what was happening.
- now call Growth 1 phase because of the rapid growth that occurs during it.
- S Phase
- synthesis phase
- phase where DNA is replicated
\sim two identical chromosomes, called sister chromatids are joined at the centromere.

Cell Division

II) The Cell Cycle

- S Phase
- synthesis phase
- phase where DNA is replicated \sim two identical chromosomes, called sister chromatids are joined at the centromere.
- G2 Phase
- Gap 2 or Growth 2 phase
- time for the cell to rebuild its reserves of energy and make proteins for cell division

Figure 16.6 During the S phase of the cell cycle, each chromosome is copied. The resulting sister chromatids are held together at the centromere.

Cell Division

II) The Cell Cycle C) Mitosis

E Telophase

Two daughter cells are formed. The cells divide as the cell cycle proceeds into cytokinesis. Both daughter cells then proceed into the next interphase.
to the equator of the cell.

Figure 16.8 These illustrations and micrographs show what happens inside a cell during interphase (\mathbf{A}) and mitotic cell division (\mathbf{B} to \mathbf{E}).

Copyright e 2008 Pearson Education, Inc., publishing as Pearson Benjemin Cummings.

[^0]

Copyright e 2008 Pearson Education, Inc... publishing as Pearson Benjamin Cummings.

[^1]
Cell Division

II) The Cell Cycle

C) Mitosis

- there are four main stages to mitosis
- Prophase
- Metaphase
- Anaphase
- Telophase
- Cytokinesis (splitting of the cell)

Cell Division

II) The Cell Cycle

- Prophase
- the first phase of mitosis
- chromosomes become visible
- centrioles migrate to opposite poles of the cell
- centrioles are small protein bodies found in the cytoplasm of animal cells that provides a site for spindle fibers to attach to.
- spindle fibres are protein structures that guide the movement of chromosomes during cell division.
- collectively centrioles and spindle fibres make up the spindle apparatus.

Cell Division

II) The Cell Cycle

- spindle fibres are protein structures that guide the movement of chromosomes during cell division.
- collectively centrioles and spindle fibres make up the spindle apparatus.
- most plant cells lack centrioles but have spindle fibres
\square the centromere joining two chromatids anchor the chromosomes to the spindle fibers.
a nuclear membrane appears to fade.

Cell Division

II) The Cell Cycle

- the centromere joining two chromatids anchor the chromosomes to the spindle fibers.
- nuclear membrane appears to fade.
- Metaphase
- Second phase of mitosis
- Chromosomes composed of sister chromatids move toward the centre of the cell (the equatorial plate)
- Chromosomes are dark filaments attached to spindle fibers (most visible at this stage)
- Chromatids can become intertwined

(3) Metaphase

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cell Division

II) The Cell Cycle

- Chromosomes are dark filaments attached to spindle fibers (most visible at this stage)
- Chromatids can become intertwined
- Anaphase
- Third phase of mitosis
- The centromeres divide
- The sister chromatids, now called chromosomes, move to opposite poles.
- The same number and same type of chromosomes will be found at each pole.

(4) Anaphase

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Cell Division

II) The Cell Cycle

- The sister chromatids, now called chromosomes, move to opposite poles.
- The same number and same type of chromosomes will be found at each pole.
- Telophase
- the last phase of mitosis
- the chromosomes reach the opposite poles of the cell.
- spindle fibers dissolve and a nuclear membrane forms around each mass of chromatin

(5) Telophase

Cell Division

II) The Cell Cycle

- The chromosomes reach the opposite poles of the cell and length.
- Spindle fibers dissolve and a nuclear membrane forms around each mass of chromatin
- Cytokinesis
- the division of the cytoplasm
- in an animal cell a furrow develops, pinching off the cell into two pairs.
- in plant cells a cell plate will develop into a new cell wall.

Copyright 2008 Pearson Education, Inc., publishing as Fearson Benjamin Cummings.

Cell Division

II) The Cell Cycle

- The division of the cytoplasm
- In an animal cell a furrow develops, pinching off the cell into two pairs.
- In plant cells a cell plate will develop into a new cell wall.
- The Cell Clock
- cells have a biological clock that regulates the number of cell divisions
Example) Heart Cells
- normally can undergo mitosis approximately 50 times.
- if you freeze the cells in liquid nitrogen after 10 division they will divide 40 more times when thawed.
- this proves that there is some sort of "cell clock"

Cell Division

II) The Cell Cycle

- normally can undergo mitosis approximately 50 times.
- if you cytogenetically free the cells after 10 division they will divide 40 more times when thawed.
- this proves that there is some sort of "cell clock"
- usually more specialized cells (neurons, excretory) divide less than nonspeciallized (skin, stomach lining)
- two types of cells divide endlessly
- sperm producing spermatogonia
- cancer cells
- the biological clock is turned on after cells differentiate.

Cell Division

II) The Cell Cycle
D) Cloning

Cell Division

II) The Cell Cycle

Cloning 411

- cellular differentiation
- is the process by which a less specialized cell becomes a more specialized cell type.
\square occurs numerous times as the organism changes from a single zygote to a complex system of tissues and cell types.
- a common process in adults as well: adult stem cells divide and create fully-differentiated daughter cells during tissue repair and during normal cell turnover.

Cell Division

II) The Cell Cycle

- occurs numerous times as the organism changes from a single zygote to a complex system of tissues and cell types.
- a common process in adults as well: adult stem cells divide and create fullydifferentiated daughter cells during tissue repair and during normal cell turnover.
- causes a cells size, shape, polarity, metabolic activity, and responsiveness to signals to change dramatically.
- these changes are largely due to highly-controlled modifications in gene expression.
- different cells can have very different physical characteristics despite having the same genome.

Cell Division

II) The Cell Cycle

- these changes are largely due to highly-controlled modifications in gene expression.
- different cells can have very different physical characteristics despite having the same genome.
- a cell that is able to differentiate into many cell types is known as pluripotent.
- called stem cells in animals
- called meristematic cells in higher plants

Cell Division

II) The Cell Cycle

- a cell that is able to differentiate into many cell types is known as pluripotent.
- called stem cells in animals
- called meristematic cells in higher plants.
a cell that is able to differentiate into all cell types is known as totipotent.
- in mammals, only the zygote and early embryonic cells are totipotent, while in plants (and in animals), many differentiated cells can become totipotent with simple laboratory techniques.

Cell Division

II) The Cell Cycle

What is Cloning?

- cloning is the process of forming identical offspring from a single cell or tissue of a parent organism.
- both the clone and the parent have identical or near identical DNA (random mutations occur)
- does not result in variation of traits
- considered a form of asexual reproduction
- clones occur naturally example)
- Hydra undergoing mitosis during the process of budding

Cell Division

II) The Cell Cycle

 example)- Hydra undergoing mitosis during the process of budding
- Runner of a strawberry plant

Identical (monozygotic) twins

- Monozygotic twins (zygote undergoes mitosis and splits into two)

Cell Division

II) The Cell Cycle

- Hydra undergoing mitosis during the process of budding
- Runner of a strawberry plant
- Monozygotic twins (zygote undergoes mitosis and splits into two)
- Plant Cloning
- In 1958 Fredrick Stewart produced a carrot plant from a single carrot cell
- now cloning is widespread in the agriculture/horticulture industries.
\square it is desirable (profitable) to have plants of predictable characteristics
- Easy to clone plants: carrots, tobacco, lettuce
- Hard to clone plants: grasses, legumes.

Cell Division

II) The Cell Cycle

- Easy to clone plants: carrots, tobacco, lettuce
- Hard to clone plants: grasses, legumes.
- Animal Cloning
- Robert Biggs and Thomas King
- investigated nuclear transplants in frogs.
- first to clone a frog.

Cell Division

II) The Cell Cycle

- Animal Cloning
- Robert Biggs and Thomas King
- investigated nuclear transplants in frogs.
- first to clone a frog
- the cloning of the sheep "Dolly" by Dr. Ian Wilmut's team was the first to clone an animal using adult cells.
- the nucleus of an udder cell of an adult sheep was placed in the enucleated egg cell from another sheep.
- the egg developed in a Petri dish until an early embryo stage.
- then the egg was placed into the womb of another sheep.Unfertilized eggs are collected from a donor animal. The nuclei of these cells are removed.

egg cells , (

Figure 18.23 Wilmut's team cloned an adult sheep by inserting the nucleus from one of the sheep's cells into an egg from which the nucleus had been removed. The key to Wilmut's success was ensuring that cell cycles of the donated nucleus and the egg cell were synchronized. Even so, only one of almost 300 trials was successful in producing a live cloned lamb.

B Udder cells are collected from the genetic donor animal and cultured in a medium that stops cell division.The nuclei of the udder cells are transplanted into the egg cells.The cells are treated with an electric current to restart the cell cycle.The resulting cells are cultured. Some begin to divide to produce early embryos.The embryos are implanted into the uterus of a surrogate mother. One embryo survives to produce a lamb that is genetically identical to the donor of the udder cell.

Cell Division

II) The Cell Cycle

- the egg developed in a Petri dish until an ealry embyro stage.
- then the egg was placed into the womb of another sheep.
- DNA donor: adult Finn Dorsett Sheep
- Egg donor: Poll Dorsett Sheep
- Womb provider: a third sheep
- Clone: Dolly was a clone of the adult Finn Dorsett Sheep

[^0]:

[^1]: Copyright © 2008 Pearson Education, inc., publishing as Pearson Benjamin Cummings.

